Abstract:
We experimentally and theoretically study the effect of the intraspecies scattering length onto the heteronuclear Efimov scenario, following up on our earlier observation of Efimov resonances in an ultracold Cs-Li mixture for negative [Pires et al., Phys. Rev. Lett. 112, 250404 (2014)] and positive Cs-Cs scattering length [Ulmanis et al., Phys. Rev. Lett. 117, 153201 (2016)]. Three theoretical models of increasing complexity are employed to quantify its influence on the scaling factor and the three-body parameter: a simple Born-Oppenheimer picture, a zero-range theory, and a spinless van der Waals model. These models are compared to Efimov resonances observed in an ultracold mixture of bosonic
13Cs and fermionic 6Li atoms close to two Cs-Li Feshbach resonances located at 843 G and 889 G, characterized by different sign and magnitude of the Cs-Cs interaction. By changing the sign and magnitude of the intraspecies scattering length different scaling behaviors of the three-body loss rate are identified, in qualitative agreement with theoretical predictions. The three-body loss rate is strongly influenced by the intraspecies scattering length.
S. Häfner, J. Ulmanis, E.D. Kuhnle, Y. Wang, C.H. Greene, M. Weidemüller: Role of the intraspecies scattering length in the Efimov scenario with large mass difference, Phys. Rev. A 95 (2017) 062708
https://doi.org/10.1103/PhysRevA.95.062708
Related to Project C03